Mark is for 3 As-Cl bonds and 1 lone pair
(Trigonal) pyramid(al) / tetrahedral
Allow triangular pyramid

Mark is for $2 \mathrm{Cl}-\mathrm{Cl}$ bonds and 2 lone pairs
Do not penalise if + not shown

Bent / V-shaped / triangular
Not trigonal
(b) There are 4 bonds or 4 pairs of electrons (around As)

Can show in a diagram. If lone pair included in shape, $C E=$ $0 / 2$
(Electron pairs / bonds) repel equally
QoL

M2. (a) lodine has more electrons / iodine is bigger (atom or molecule) / iodine has bigger M_{r} / bigger surface area

Stronger / more van der Waals forces / vdw / London / temporarily induced dipole / dispersion forces between molecules

Stronger VdW intermolecular forces = M2 If stated VdW between atoms lose M2
(b) (i)

Mark is for 3 bp and 1 Ip attached to N (irrespective of shape)

Mark is for 3 bp and 0 Ip attached to B (irrespective of shape)
NHF_{2} shape - pyramidal / trigonal pyramid
Accept tetrahedral / triangular pyramid
BF_{3} shape - trigonal planar
Not triangular or triangular planar
(ii) 107°

Allow 106-108 ${ }^{\circ}$
(c) Hydrogen bonds

Allow H-Bonds
Not just Hydrogen
Apply list principle eg Hydrogen bonding and dipole-dipole $=$ 0
(d) Coordinate / dative covalent / dative

If covalent mark on
If ionic / metallic $C E=0$

Lone pair / both electrons/ 2 electrons on $\mathrm{N}\left(\mathrm{HF}_{2}\right.$) donated (to BF_{3})
Direction of donation needed here

> M3. (a) $\quad \mathrm{P}=100000(\mathrm{~Pa})$ and $\mathrm{V}=5.00 \times 10^{-3}\left(\mathrm{~m}^{3}\right)$
> M1 is for correctly converting P and V in any expression or list Allow $100(\mathrm{kPa})$ and $5\left(\mathrm{dm}^{3}\right)$ for M 1.
$\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{100000 \times 5.00 \times 10^{-3}}{8.31 \times 298}$
$M 2$ is correct rearrangement of $P V=n R T$
$=0.202$ moles (of gas produced)
This would score M1 and M2.
Therefore $\frac{0.202}{5}=0.0404$ moles $\mathrm{B}_{2} \mathrm{O}_{3}$
M3 is for their answer divided by 5
Mass of $\mathrm{B}_{2} \mathrm{O}_{3}=0.0404 \times 69.6$M4 is for their answer to M3 $\times 69.6$
$=\underline{2.81}(\mathrm{~g})$
M5 is for their answer to 3 sig figures.
2.81 (g) gets 5 marks.
(b) $\mathrm{B}+1.5 \mathrm{Cl}_{2} \rightarrow \mathrm{BCl}_{3}$
Accept multiples.
$\underline{3}$ bonds
Pairs repel equally/ by the same amount
Do not allow any lone pairs if a diagram is shown.
(c) (i) $\quad 43.2 / 117.3\left(=0.368\right.$ moles $\left.\mathrm{BCl}_{3}\right)$
0.368×3 ($=1.105$ moles HCl$)$
Allow their BCl_{3} moles $\times 3$
Conc HCI $=\frac{1.105 \times 1000}{500}$
Allow moles of $\mathrm{HCl} \times 1000 / 500$

Page 5
(ii) $\mathrm{H}_{3} \mathrm{BO}_{3}+3 \mathrm{NaOH} \rightarrow \mathrm{Na}_{3} \mathrm{BO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$

> Allow alternative balanced equations to form acid salts.
> Allow $\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{NaOH} \rightarrow \mathrm{NaBO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(d) $\frac{10.8}{120.3}(\times 100)$

Mark is for both M_{r} values correctly as numerator and denominator.
8.98(\%)

Allow 9(\%).

Sell the HCl
(e) Alternative method

$$
\mathrm{Cl}=86.8 \%
$$

$$
C l=142 g
$$

B	Cl	
$\frac{13.2}{10.8}$	$\frac{86.8}{35.5}$	
	B	Cl
	$\frac{21.6}{10.8}$	$\frac{142}{35.5}$

$1.22 \quad 2.45$ or ratio $1: 2$ or BCl_{2}
2:4 ratio
BCl_{2} has M_{r} of 81.8 so
$81.8 \times 2=163.6$
Formula $=\mathrm{B}_{2} \mathrm{Cl}_{4}$
$\mathrm{B}_{2} \mathrm{Cl}_{4}$
Allow 4 marks for correct answer with working shown.
Do not allow $\left(\mathrm{BCl}_{2}\right)_{2}$
[20]

M4.(a) Covalent

$$
\text { If not covalent } C E=0 / 2
$$

If dative covalent $C E=0 / 2$
If blank mark on
Ignore polar
If number of pairs of electrons specified, must be 3

1

Shared pair(s) of electrons / one electron from Br and one electron from F Not 2 electrons from 1 atom
Not shared pair between ions/molecules
(b) (i)

or

BrF_{3} should have 3 bp and 2 Ip and correct atoms for the mark
Penalise FI

$$
\begin{aligned}
& \mathrm{BrF}_{3} \text { if trigonal planar shown }=120^{\circ} \\
& \quad \text { Allow } 84-90^{\circ} \text { or } 120^{\circ} \text { and ignore } 180^{\circ} \\
& \text { or if } \mathrm{T} \text { shape shown } 84-90^{\circ} \\
& \text { Irrespective of shape drawn }
\end{aligned}
$$

(ii)

BrF_{4}^{-}should have 4 bp and 2 lp and all atoms for the mark(ignore sign)
Allow FI
$\mathrm{BrF}_{4}^{-} 90^{\circ}$
Only
Ignore 180°
(c) Ionic or (forces of) attraction between ions / bonds between ions

If molecules, IMF, metallic, $C E=0$
If covalent bonds mentioned, $0 / 3$, unless specified within the BrF_{4}^{-}ion and not broken
Ignore atoms

Strong (electrostatic) attraction / strong bonds / lots of energy needed to break bonds

Between K^{+}and BrF_{4}^{-}ions/oppositely charged ions / + and - ions
If ions mentioned they must be correct
Strong bonds between + and - ions $=3 / 3$
(d) (i) Hydrogen bonds/hydrogen bonding/H bonds/H bonding Not just hydrogen
(ii)

One mark for 4 partial charges
One mark for 6 lone pairs
One mark for H bond from the lone pair to the $\mathrm{H} \delta+$
Allow FI
If more than 2 molecules are shown they must all be correct.Treat any errors as contradictions within each marking point.
$C E=0 / 3$ if incorrect molecules shown.
(e) vdw / van der Waals forces between molecules

QoL
Not vdw between HF molecules, $C E=0 / 2$
$v d w$ between atoms, $C E=0 / 2$
If covalent, ionic, metallic, $C E=0 / 2$

IMF are weak / need little energy to break IMF / easy to overcome IMF

M5.

Need to see $3 P-H$ bonds and one lone pair (ignore shape).
(b) Coordinate / dative

If not coordinate / dative then chemical error $\mathrm{CE}=0$ unless blank or covalent then M1 = 0 and mark on.

Pair of electrons on $\mathrm{P}\left(\mathrm{H}_{3}\right)$ donated (to $\mathrm{H}+$)
Do not allow a generic description of a coordinate bond.
(c) $109.5^{\circ} / 1091 / 2 / 109^{\circ} 28 \square$

Allow answers in range between 109° to 109.5°
(d) Difference in electronegativity between P and H is too small Allow P not very electronegative / P not as electronegative as N, O and F / P not electronegative enough / P not one of the 3 most electronegative elements.
Do not allow phosphine is not very electronegative.

